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ABSTRACT
We prove the existence of smooth nonnegative solutions to the initial-
boundary value problem associated with the system of diffusion equations which
describes a certain population model:

u, = A(c1u + d1uv) + (E1 - a,u - b1v)u

t
(*)

Ve = A(czv + dzuv) + (E2 - aju - bzv)v, (t,x) e [(0,) x [0,1]
(**) u(0,x) = u,(x), v(0,x) = vq(x)
(*re) ux(t,O) = ux(t,1) = vx(t,O) = vx(t,1) =0 ,

where u and v denote the densities of two competing species. Using
Sobolevski's method, we establish the local existence of nonnegative solutions
under the hypothesis <y > 0, di > 0, Ei > 0, ay » 0 and bi 20, i =1,2,
Under the additional hypothesis ¢y = ¢,, we prove the global existence of

solutions by energy estimates.

AMS (MOS) Subject Classifications: 35K55, 35K60, 35B65, 92A15

Key Words: system of diffusion equations, population model, smooth
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SIGNIFICANCE AND EXPLANATION

) r TN
The system of diffusion equations (*) (see Abstract) proposed by

Kawasaki, Shigesada and Teramoto describes a population model of two competing
species with self~- and cross-population pressures. The densities of the two
. o 5 Gaghiar
species are denoted by u and v. In this paper we—study the initial-
boundary value problem associated with (*), The Neumann boundary condition
(***) corresponds to the case where the flux is zero at the boundary. Many
investigators have considered nonlinear diffusion systems arising from various
physical and biological problems. These equations, however, have a special
structure: the highest order derivatives are not coupled or, at least, the
coefficient matrix for the highest order derivatives is positive definite.
This is not the case for the system (*) and hence, some of the technigues
which are effective for those systems are no longer applicable to our case.
Nevertheless, we can still use Sobolevski's method (see Reference [2]) to
establish the local existence of solutions. Under the special assumption
€y ® cy in (*), we can also prove the global existence of solutions by energy
estimates. The unusual structure of (*) seems to make it difficult to ~ettle

the question of asymptotic stability of solutions.
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SMOOTH SOLUTIONS TO A QUASI-LINEAR SYSTEM OF DIFFUSION EQUATIONS
FOR A CERTAIN POPULATION MODEL

Jong Uhn Kim

0. Introduction
This paper deals with the initial-boundary value problem for the syastem of equations:
u, = A(c,u + d,uv) + (21 - au - b1v)u

{0-1)
v, = A(czv + dzuv) + (22 - au - bzv)v, (t,x) e [0,®) x [0,1] ,

where % di' EL’ ;1 and 81' i = 1,2, are nonnegative constants. This system of
equations describes a model of two competing species with self- and cross-population
pressures. Here, u and v denote the population densities of the two competing
species. For the derivation of Equations (0-1), the reader is referred to [3]. From the
physical consideration, u and v should be nonnegative and (0~1) is subject to the
Neumann boundary condition:

(0-2) U lt,x) =V (T,x) =0 at x=0,1.

For the case when ¢4 > O, cy 3 0, 44 > 0 and d, = 0, the stationary problem associated
with (0~1) was discussed in {4]. Also in its introduction, it was announced that Masuda
and Mimura have proved the global existence of nonnegative solutions to (0-1) in the above
case.

In this paper we shall prove the existence of smooth nonnegative solutions to (0-1)
with suitably smooth initial data under the assumption that <y > 0, d1 >0, i =1,2, 1In
Section 1, we establish the local existence of solutions by the method due to Sobolevski,
which is well presented in (2]. We employ the function spaces Os, s >0 (see Section 1),
which enable us to prove the Cﬁ-reqularity of solutions for t > 0. Some properties of

0' which are necessary in the development of our arguments are proved in the Appendix.

In Section 2, we prove that the local solutions can be extended globally on [0,%) under

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the Naticnal Science Foundation under Grant No. MCS-7927062,
Mod. 2.
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the additional hypothesis that c, = ¢y 2 0, but without any restriction on the size of
initial data.

We shall make some remarks on the structure of (0-1)., Pirst of all, we see that (0-1)

and (0-2) reduce to

u, = A(u + uv) + (Ey ~ a,u =~ b;viu

(0-3)
v, = A(Yv + uv) + (E2 - au - bzv)v ’
(0-4) ult,x) = ve(t,x) =0 at x =10,1,
through
~ 01
u(t,x) = — u(c, T,x)
d 1
2
~ C1
(0-5) v(T,x) = — v{c, T,x)
d‘ 1
C1T =t ,
c

7z 7

where Y = —cl >0, E >0, a >0 and b, >0, i = 1,2. Throughout this paper we will
1
consider (0-3), (0~4) instead of (0-1), (0-2). It is interesting to observe some unusual
features possasged by (0-3). For simplicity, we shall consider ¢
u, = Alu + uv)
{0=6)
V = Alyw + uv)
and the associated nonlinear operator S:
: u =A(u + uv)
(0=7) ———> .
v ~A(Yv + uv)
Then, for smooth nonnegative functions u and v satisfying the Neumann boundary

condition, (S(:),( is not nonnegative in general. 1In fact, it is strictly

u))
v sznz
negative if we take u = 100 + y + 6cos®x, v = 10 - cos¥x, for example. Hence, we expect
to have difficulty in obtaining energy estimates to establish global existence of solutions

to (0-6). Now the linear operator associated with (0-7) is

-2-




) =(1 + £)4u - gav
(0~8) ——>

v -fAu - (y + glav
where f and g are assumed to be given nonnegative functions. Then it is easy to see
that the right-hand side of (0-8) is not a strongly elliptic system in general. This also
suggests that the usual procedure to obtain energy estimates may not be effective.
However, if Yy = 1, i.e. €y = 3, then we can make use of u =~ v as an intermediary
function to obtain necessary energy estimates. This is {llustrated in Section 2. Finally
we report that the question of asymptotic stability of solutions remains open. In view of
the ahove remarks, it seems hopeless to get a uniform bound of the solution through energy
estimates. In the mean time, the structure of S discourages us from attempting to
construct an iavariant set.
Acknowledgement. I am very grateful to Professor M. Crandall for his invaluable advice and
encourageaent throughout this work. In particular, he pointed out some serious errors in
Section 1 and significantly simplified the original lengthy estimate of the Lg—norn in

Section 2.
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Section 1. Local Existence

As mentioned above, we shall use the method in [2]. Hence, we write Equations (0-3)
in the form of an abstract evolution equation and verify all the conditions prescribed in
i the above reference. Let us define the linear operator A.(t,w) as follows:

R't 't
Ru-~- (1 + fe YMu - ge Av
‘ u 8

(1-1) Aglt,w)| | = Rt Rt .
v R.v-te'Au-(Y¢ge ) av

where R, is a positive constant which will be determined later on and w = (g)- Writing

4
Y -R.t - -R‘t
u = ue s vV = ve . (0-3) is equivalent to i
' - . »
: a |v u u u
: (1-2) a | e + A. t,| . ol ™ Fs t,| o ’
; v v v
3 where
: R't * ® Rat L ] Rst L ] * !
; * 2e uv + (E. -a,e u -be  v)u
: [u X X 1 1 1
1-3 = .
(1=3) Fst'l' Rt, , Rt , REt, .
v s 8 8
2¢ "uv + (E,6 - ae u - b.e v v
X x 2 2 2

From now on, we shall suppress "*" and use both notations (;) and (a,b) to denote the

same vector. For real s, we define

Al e e

i - L J
i (1-4) o - {I a cosnfx : a € C and I |an|2(1 + n?e?)8 < =} ,
i n=0 n=0
™ -
: and if f = 2 a cosn¥x and g = Z b cosntx lie in & , we write
! n=0 " =0 " 8
» — 1 7 2.2
-’ - -— s B
| (1-5) (£,9%, = agby + 3 1 (1 +n%x a b
a n-1
i
! and
Y
(1-6) - 2,
Ifl8 (f,f)8

Obviously, & C ¢ and o1 < Il if 8y > B8y, We also define
s, s, 8, 5,
Xg = 0. x 03, l(g,f)lxs = lgls + Ifls, for all (g,f) € X, and ?

-4~
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k
d
(1-7) 12 = (g et?o,n ¢ () fer’on, k=1,...m.
[ K]} 2 is defined in an obvious way. When X and Y are Banach spaces, we denote by
L

B(X,YT the set of all bounded linear operators from X into Y. Let f(x),g(x) be real-
valued functions in 's+1' s » 0, such that

1£1 191 CM<w

a+t1’ 7 g+t

and

£(x),g(x) » max{- %.- %), for all x e (0,1} .

Denote As(o,(g,f)) by Ag. Then we have:
Proposition 1.1. There is a number R(s,M) » 1 depending on s,M such that if
Ry » Ris,M), (A1 - }\B)_1 is a bounded linear operator on X, for all AeC with

ReA € 0, and

< Cis,M)

1-8 MAI =R )
(1-6) (a1 =) BX,x ) A+ 1

holds where C(s,M) is a positive constant which depends only on 8,M and is independent

of X,Rs. Furthermore, (AI - As)—1 is a bounded linear operator from X, into Xg42

L with
1

1- - - .
(1-9) 1AL = A) lB‘xs'xs+z’ <c(s,M), for all AeC, RedA < 0

(Proof). First we prove the above assertion in the case where s = m is a nonnegative

if m=0

integer with f,g e ¢ P where 0 = {; if omoa1

Agssume If1 ,lgl <M and

£{x),g(x) » max(- O 1) for all x & [0,1]). Now we will follow the well-known procedure.

Suppose £ = z Encosnwx e 0 , N = I n cosn¥x € 0 , u = 2 u cosnmx e o and
o n=0 n=0 n=0

v= T v cosn%x € 0 satisfy the equations:
n=0

(A - Ju + (1 + £ )Au + g, 4v = £
(1-10) P 0 0
(A = Ry)v + foAu + (y + qo)Av =n,

where ) is a complex number with Rel < 0, Ry, » 1, and fy,9p are constants such that

1
fo:99 > max(-~ i %). Then, it is easily seen that for all n » 0,

R TR Se




2.2

2.2
{- T! - (Y + g)n"x }En * gon ¥n,

(1-11) u, - e . A
2 2.2 4 4
(A - R-) - (A - R-)(1 + Y+ to + go)n T+ (Y 9 + 1!°)n ®

and

2.2 2.2
£n el + (A-R_ - (1 + £ )n“%}n
{1-12) v, = 0 n m 0 n

2 22 44 °
(A - Rn) - (A - R_)(i + Y+ to + qo)n 4 (Y + 99 * 1!°)n x
Now we will estimate lunl and Ivnl. Setting A = -y + iv, uy >0, vE€ R, we can rewrite

(1=-11), (1-12):

2.2 2.2
. (-u-am+1v)5n-(7+go)n w En+gon LU
(1=11) u, =

2 2.2 4.4 2 22,
(u+nm) +(u+Rm)(1+y+f°+go)n x +(ngo+yfo)n X =V -10(2(u+Rm)+(1+7*fo+go)n "}
2.2 2.2
N fon " En+(-u-nm+1v)nn-(1+fo)n ®n
(1-12)" v = AR

2 22 2.4 2 2 2
(u+nm) +(u+nm)(1+y+£o+go)n ] +(Y+go+1fo)n R =V -1v{2(u+nm)+(1+y+fo+qo)n '}

2 2 2.2 4.4
Case 1. (w+R ) < [v] < |v|® < z{(u+nm) +HORR Y (1+7+E g0 )n 0"+ (Yeg +yE In ¥ 1.
In this case, we use the inequality:

(w+ R + (1 + Y+ £+ g0’} > (u + 5,2

+ (u+ Rn)(1 + Y+ fo + qo)nz'n2 + (y + 9% + yfo)n4'4

to derive
(1-13) lunl € TR (&l * IngD
m
amd
¢
(1-14) ol < T (gL + Ingy
m

where C 1is a positive constant independent of A,fo,go,En,nn,n and Ry
Case 2. (u+R ) < |v]| < lvl2 ana |v}? > 20(w+r_) 2 (ur Y(1+y+£ +g )n212+(1*g +ve ndaty.
" m ™ m [} 0 0

1
Case 3. 3 (u + Rn) € Iv] € u+ Ry

1

Case 4. |v| ¢ 3 {n + Ry
For Cases 2, 3, 4, it is easy to obtain (1-13), (1-14). Therefore, we conclude that (1-

13), (1-14) hold for all A € C, Reld < N and all Ry > 1 where C is a positive constant

-6=
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B cahatii

: §
! £
2 2
independent of A,to.qo,cn,nn,n and R,. Next we shall estimate ¥n |un| and
lznzlvnl, for n # 0. From (1-11)', (1-12)', we get
(-x+iy)§ - (y+g )§ + g,
(1-13) '2n2“n -3 -0 0 Enz OL I
X2+ (eysf g )x + (Yegubyey) - ¥° - Sy(2xtT+yef +q,) 1
and ]
£ E + (-x+tiy)n - (1+£))
(1-16) lznzvn =3 On *'\-L 3 OL
X"+ (1eydforgo)x + (Yeg ¢vfo) -y = iy (2x+1+y+f +g,)
¥+R
where x = 22.>°: Y- :2-
nw n'x
2,1 2 2
Case 1. x *2(Y*9°+on)<y €2{x" + (V + Y+ £, + gglx + Y+g°+7f°}-
In this case, we use the inequality: (x + 1 + vy + £, + 90)2 >x2+ (1 4+ Y+ £+ gg)x
+Y+tgyt 1!0 to derive that
2 2
(1=-17) “nlu | <cIE ]+ In, 1)
and !
(1-18) vznzlv | €ctle ]l +1In D) ;
n n n ‘ :

where C is a positive constant independent of A, fo, 9o+ Eh' r\‘. n and Rp.
Case 2, 2{x2 + (1 +y+f+gydx+y+gyt yto} < yz.

2 2 1
case 3. Yy € x +2(1+q°+vto).

In Cases 2, 3, it is o:ly to get (1-17), (1-18). Therefore, we conclude that

—c
(1=19) Iullll + Ivln < T+ R_ (lEln + Inlm)
and
(1-20) lnlm2 + Ivl||l+2 < c(lzlm + Inlm)

hold for all A e€C, all R, 2> 1, where C 4is a positive constant independent of A f,,
do¢ €, n and Ry, Next suppose u @ Ow_z, ve 0“2, Ee 0_ and ne 0_ satisfy the
following equations:

(;\-1\')\14' (1 + £)Au + gAv = §

(1=21)
(A = R,V + fhu + (Y + glAv = n

@ 7=

1
»
%
5




where A € C, Rel < O, Ry > 1, and f,g€ 00 are real-valued functions satisfying
lflo,lglq <&M and f£(x),g(x) > max(~ %,- %) for all x e [0,1]. Let us choose a
partition of unity {01,...,0N} as follows:
N k
® - : d
(1) 01 >0, Oi ec ([(0,1]), z 01 1 on 10,11 and (E;) oi(x) =0 at x = 0,1, for

i=1
all k> 14;

(ii) supp ‘i C {0,111 N [xi - di,x1 + di], x; € {0,1], for some di >0 and

[£(x;) - £(x}] < €, lg(xg) = g(x)! ¢ € hold for all x € [0,1] N [x; = 2d;,x; + 2441,
Note that the choice of N, {01,...,0“} depends on € and M. Next we define a set of
functions {#1,...,WN} such that for each i = 1,...,N,

» «
(i) 0 < 01 <1, ti € Cyl-=,=);

W

(ii)‘ Wi 1 on [x1 - qg.xy + 4, Wi E0 on (-=,®) = [x; -2d;,x; + 2di]'
€ > 0 will be determined later on. By multiplying (1-21) by ¢, we see that
(1-22) (A - Rm)(u¢1) + (1 + fi)A(uQi) + in(VQi)
= 501 + (1 + f)uAOi + 2(1 + f)uxoix + gvA¢1 + 2gvx¢ix
+ (fi - f)A(uoi) + (gl - q)A(v¢i)
and
(1-23) (2 - Rm)(v¢i) + fiA(voi) + (Y + gi)A(v¢i) =
= 7\01 + qu¢i + 2f“xoix + (v + q)vAoi + 2(y + g)vx¢ix
+ (£ - f)A(uoi) + (gi - g)A(in) ,
where £, = f(xi), 9; = g(xi), i=1,...,N, From the Appendix, it is easy to see that the

right-hand sides of (1-22) and (1-23) lie in Qm with the following estimates:

(1-24) l(fi - f)A(uOi)lo < elA(uOi)l0 H
*
{(1=-24) I(fi - f)A(u01)|1 < Clvi(f1 - £)1 .lA(uOi)l‘ + CIW-‘.(fi - f)l1 IA(uOi)l3
. 3
3 1 4
4 4
< t:ClA(uQi)l1 + c“’i(fi - f)l1IA(u01)I1IA(u01)|O

< 2eclA(ug )1, + & v (£, - f)l:lA(uoi)lo ,
14

where C denotes positive constants independent of €, u, 01, wi and f;

e
(1-24) '(fi - f)A(uOi)lm < Cm(l‘ci(fi - 601 _IA(uOi)lm + l“i(fi - £ 2IA(uOi)Im_

L L
m

1)'

Q-




for m » 2, where C, a positive constant which depends only on m;

(1-25) 1o, 1 < C 1L 191, for all m >0
(1-26) I(1 + f)quilm < le1 + flululmlA01|°, for all m > 0 ;
(1-27) 11+ f)ux¢lxlm < CmH + f'u'“'m#‘lwilo-ﬂ' for all m >0 .

The estimates for the remaining terms on the right~hand sides of (1-22), (1-23) are similar
to (1-24) to (1-27). Thus, {(1-20) yields

(1-28) IuOilm < Cm{EIA(\loi)lm + elA(v@i“m +

+
w2 T IV

1 4 4
+ (1 =)y (f, - £)) + Wy (g, -~ g + My (£, - £)1 +
€3 i 7 L:‘ i°74 I‘llZ“ i1 L:‘

+ ”’i(gi - g)ILZ)('A(u¢i)Im-1 + lA(v¢i)lm_‘) +

m

+REL + INEDRG + (1 Y+ AEN Mgl ) (Rl

LB A IS LY X3 BRE PO B )

m+ a+1

for all m » 0, it being understcod that l'lm_1 =0 if m = 0. Cn is a positive

constant which depends only on m and is independent of €, X, Ry, u, v, Oi: V.. & n f

and g. Hence, we could have taken €& so small that ecm < -;- at the outset. This, in

turn, determines N, ¢1,...,¢_‘ and w1,...,¢N, depending only on €, M. Now we suppose
that such € was fixed and that the corresponding set of functions 01,..., QN, 1;1,..., 1“1
were chosen for given M. Then from (1-28), we find that

(1-29) Iuoilm + Ivoilm < C(m,M)(lEIm + ln'm + Iulm + Ivlm ) .

+2 +2 +1 +1

where C(m,M) denotes a positive constant depending only on m and M. By summing (1-29)

over i = 1,...,N, we deduce that

- +
(1-30) Iul“w2 lvlm+2 < c(m,l'll)(lé;lm + lr\lm + Iulm+1 + Ivlm+1) ’
which, combined with the inequality 1 1
2 2
1-31
(1-31) Iulm+1 < le\xlm’.zlulm .
gives
(1-32) Iulm+2 + lvlm+2 < C(m,M)(IEIm + II‘\Im + Iulm + lvlm) B

where C(m,M) denotes positive constants depending only on m,M. Now (1-21) is equivalent to
(X-lgn)u+Au=€—fAu-gAv

(1-33)
(A = RV + YAv = n - fhu - gdv .

-9-




Combined with (1-32), (1-19), applied to (1-33), yields :

(IEIm + '"ln + 2I£Aul'n + 2lgAvlm)

[of
' ! (1-34) bal WV € Ty N

< T%%!:ﬂ%_ (BEN, *+ Indy 'u'm * 'v'm) ‘
m

for all A e C, Rel ¢ 0 and all R, > 1. Here, C(m,M) is independent of 1 and Rps

and we may take C{(m,M) > %. With this particular C(m,M), we define:

{1=-33) R(m,M) = 2C(m,M) .

So for all Ry ? R(m,M) and all AecC, Rel < 0, we have

- Clm/M)
(1-36) Tul, + vl € RS (KB ¢ )

which, together with (1-32), implies

(1-37) tul + lvlm

m+2

4y S Clm,M)(IER + lnlm) .

where C(m,M) is independent of A and Rye Now the proof of the case s =m is
completed by the following lemma:

Lemma 1.2. Suppose f,g are real-valued functions in 00, lflo, Iglc <M and
£(x),g{x) > max(- %,- %) for all x e [0,1]. Let A € C, ReA € 0 and Ry 2 R(m,M).
Then, for each §,n € .m' there exist unique u,v € °m+2 such that (1-21) holds.

(Proof). We will use the method of continuity. Consider the following equations with

paraneter s q

(A= Rydu + (1 + uf)Au + ughv =

(1-38)
(A - Ry)v + ufdu + (v + ug)dv = n. j

Let us define S = {u e [0,1]: for each E,n, € Om, there exist unique u,v € .m+2 such

that (1-38) holds}.

It is obvious that 0 € S. Suppose ¥y € S and congider the mapping TE nu from
LA 4
Xne2 into Xnt+2 defined by
(1-39) 0,V > (u,v) ,
where (u,v) is the unique solution of
‘ﬁ
-10=-




(1-e0) (A= Rydu + (1 + u f)hu + poghv = £+ (u = WEM + () ~ WM
(A - RV + uofbu + (Y + uggdhv = n+ (4 = WEM + () = Wghv .
with the aid of (1-37), we can choose § > 0 independent of £,n such that luD - ul <8

implies T is a contraction for all E,n. The fixed point of T is the unique

E/,n,u &nou
solution of (1-38). Hence, S is open. It is easy to see that S is also closed.
Therefore, S = [0,1]).

We proceed to consider the case where s > 0 is not an integer. Let k > 1 be an

integer such that k - 1 < 8 < k. Suppose £,g are real-valued functions in

6 11 0gl <M, and £(x),g(x) > max(- 1, I} for all x € [0,1]. Then, we can
determine R(k,M) and R(k - 1,M) by (1-35). Let

(1-41) R(s,M) = max(R{k,M),R(k - 1,M)})
and R, be any positive number such that R, > R(s,M). By taking Ry_q = Ry = R, we
define A d:f Ak_1(0,(q,f)) = Ak(O,(g,f)). Then, we have proved that for all e C,
ReA € 0, and for all Ry > R(s,M),

(1-42) (A1 - 148)'1 @ B(Xy_qo%pq) N BIX,_g,X0q) 0 B(X, X, ) 0 BX Xy pn) o

By interpolation, we can conclude that

- - -1
(1-43) ! (A1 A.) e B(xs,xs) al B(xs,xs+2)
and that

- Cls,M)
(1-44) l“'a + Ivls < 1Al + 3 (IEI' + Inl’) B
(1-45) luIs+2 + Ivls+2 < C(S.H)(IEI' + I“Is) B

where C(s,M) denotes positive constants which depend only on s8,M. Now the proof of
Proposition 1.1 is complete.

Next we shall discuss some properties concerning As(t,(g,f)) and Fs(t,(g.f)).
Lemma 1.3. Let (gy,f;) € Xgpqe 4™ 1,2,3, 8 >0, such that g 0,01 <§ and
gy(x),£,(x) > -;- max( - %,- {-) for all x e [(0,1], i = 1,2,3. Let R, > R(s,M) which is
determined by (1-35) i{f s is an integer and by (1-41) if s is not an integer. Using
this R,, we define A (t,(gy,f;)). Let T, be a positive number such that eR’T‘ < 2.

Then for all ti e [O,T'], i=1,2,3, it holds that

-11=
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(1-46) I{As(t1,(91,f1)) - As(tz,(gz,fz))}As(t3,(q3,£3)) 'a(x’,x‘)

< C(s,H,Rs)(|t1 -ty + lg1 - + 1f, - £.1 )

9211 17 %2054
where C(a,M,Rs) is a positive constant which depends only on s,M and Rg.
1

(Proof). First of all, by (1-1) and Proposition 1.1, we observe that As(t3,(g3,f3))- e
-1
B(xs,xs) N B(Xg,X_,5)e Set (u,v) = As(t3.(g3,f3)) (E,n). Then,
R t R t
Rgu - (1 + f3e s 3)Au - g5 s 3Av =g
(1-47) Rst3 Rst3
Rgv - f3e Au - (Y + 9, Jav = n
and
R t R t R ¢t R t
s 2 s 1 s s 1
(fze -f1e )Au+(q2e 9, ) Av
(1-48) (As(t1,(g1,f1)) - Aa(tz,(gz,fz)))(u,v) = R t, R, Rt RE, .
(fre ® “~f.e ® Htutig,e g0 " v

Using the inequalities in the Appendix, it is easy to see that for all t,,t, € [O,Ts],

(1-49) |{As(t1,(q1,f1)) - As(tz.(qz,fz)))(u,v)lxs <

< C(s,M,Rs)(It1 - t2| + If1 - f2ls+1 + Ig1 - )(Iuls+2 + 'VIs* )

9141 2

< c(s,M,Rs)Ht1 - tzJ + lf1 - les#1 + lg1 - 92ls+1)(|£'s + Inls)
from (1-37) and (1-45), where C(s,M,Rs) denotes positive constants depending only on s,
M and Rs.

Next let us define

s if 0 < s <1

Y

(1'50) p =

0 olw

if s > 1

and Fs(t,(g,f)) as in (1-3) using any Rs'

Lemma 1.4. Suppose (g,,f,) € xpﬂ with lgilp+1"filp+1
TgR
number such that e ® % < 2. Then, for all t,,t; e [0,T,], it holds that

<M, i =1,2. Let Tg be a

(1=51) lrs(ti.(q1,f’)) - rs(tz,(qz,fz))lxs <

€ C(s,M,R_)(lty = t,| + Mg, - + 1f, - £
8 1 2 1

9 et 1 2V ¢

where C(s,M,Rs) is a positive constant depending only on s, M and R,.
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(Proof). We write

(1-52)  F_(ty,(gy,8,)) = F (£, (g5,£5)) =

Ryt Rgt1, Rgt

R_t R t 1 2
(2(3 8 191xf1x -e8 2gzxfzx) + (Ey - aqe ® 'gy - bye 199 = (B - aqe ® “q,

R .t
- bye ® 28,)g,

Rt Rt Rgty

Rt
81 82
2(e Fixfix = © 92x£2x) + (B, ~ aje 94

R t
bye ® '£,)€, - (B, ~ age ° Zg,

Rt
- bye ® 2£,)f,

\

With the aid of the inequalities in the Appendix, we can estimate the right-hand side of

{1-52):
Rsti Rstz Rst1 Rscz

{(1=-53) le g1x£1x - e gZxSles < le -e llq1xt’1xls

R t

8 2

te Ig1xf1x g2xf2xla
< Cls,M,R (It = o] + Ig, - gzlp+' ML £2l9+,) .
R.t1 Rth

(1-54) le £,9, - e f.zqzl8 < Cls,M,R )]ty - tol + If‘ - lep + g, - 92'9) .

The remaining estimates are similar to (1-54) and the proof is complete.

Lemma 1.5. lLet f,g satizsfy the same conditions as in Proposition 1.1. Define

LY A.(O.(g.!)) with Ry > R(s,M). Then D(A:) is continuously imbedded into xp*1 if
-1 =3_58
u >0 where & 2 if s >3 and 9 8" 8 if 0 <8 < 1, and xs+26 is continuously

imbedded into D(A:) Af §>u and 0 < p< 1. (D(A:) is equipped with the graph norm.)
{(Proof). First we note that A, is a linear operator in Xg with D(As) - x.+2 and that

the norm I-lx is equivalent to the norm IA8(°)Ix « Therefore, it follows that
s+2 8

0 1-9
(1-55) lex < c(l,M)lA.xlx lxlx '

p+1 8 8

for all x e x.+2 ’

1
where 0 = 3 if 2>1 and 68 = % -2 4 0<g <1, and Cls,m depends only on s

-13-
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and M. Combined with Lemma 17.1 of (2], (1-55) implies that U(A:) is continuously

imbedded into x°*1 if u > 6. For the remaining assertion, we define the operator
, Q= [x ; 4, 1 g A « Then, Q is a positive~definite self-adjoint operator in x‘
[

with D(Q) = Xg42+ Then, for all x € D(Q), it holds that
- u -y U 1M

(1-56) Ixl u < C(u,l,Rs,H)IA.xlx lex < C(u,l,R',H)lelx lxlx

D(A') [} s [ 8

where C(u,-,R.,H) denotes positive constants depending only on yu, s, Ry and M. Again

using Lemma 17.1 of {2}, we conclude that lXQc) is continuously imbedded into D(A:)

where 8§ > y. Hence, X is continuously imbedded into D(A:) if §>yu and 0 < p< 1.

8+28

Now we are ready to establish the local existence of solutions:

Proposition 1.6. Suppose ug(x), vp(x) are real-valued functions in 03 v > %, s >0

+ V'

such that Iu v, 1 < L4 and ug(x),vy(x) > 1 nax[- %,- %), for all x e [0,1].

0 s+v 4 4
define As = AS(O,(uo,vo)). Then, D(As) = Xg42

0's+v
Let R, = R(8,M) and using this Rgs

and there exists t, > 0 such that (0-3) has a unique solution in

1o, e 15 DIAJ) N CL(0,t .01 DIA)) satisfying the initial condition u(0,x) = ug(x),
v({0,x) = vo(x), where a, B and n are positive numbers such that
min(i, 3) >B>a> 2 ana 0 < n<B=-a Here t_ depends only on 8(u_,v_ )1 R
2 8 s 0°°0 xs+v
a, 8, nand 8.
(Recall that R(s,M) is defined by (1-35) if s is an integer and by (1-41) if s
is not an integer.)
(Proof). Choose o, B and n such that min(%, g) >B> a> % and 0 < n< B- a
Let K be any positive number and define
(1=57) Qs(tslx,n) =|ye c“([o,cs]; xs): y(t) is real-vector
a
valued, y(0) = As(uo,vo) and
Iy(t) - y(ol, <Kt - Tl "owe,te (o8] .

We take ts so small that

R_t
(1-58) e ® % ¢ 2,

n M
(1-59) Kt’ < aL(a,e,m’ L{a,s,M) being the positive constant in the inequality
a a,
max(lglp+1,lhlp+1) < L(a,s,M)lAs(g,h)lx , for all (g,h) € D(As) [

-14-
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(1-60) xt"
I

< rax(- %,- -‘I), c(a,s,M) being the positive constant in the

1
4c(a,s,M)
inequality !
i

max(igh _oihl ) < c(a,-,H)IA:(g,h)lx’, for all (g,h) € D(AD) . i

By virtue of (1-57) and (1-60), we f£ind that for all t € to,:.l, for all y(t) e )
Q (e /Kim), |
(1~61) min{p(e,x),q(t,x)} > 3 max{~ 3, 3} |
holds for all x € [0,1], where (p(t,x),q(t,x)) = A:"y(:). We write (0-3) as :
(1-62) S 2(e) + aL(t,2(e))E(t) = Pl (e)) t

-R_¢t Rt
where z(t) = (e ? u(t,x),e 3 v(t,x)) and R, = R(s,M) as above. Let us define the

mapping L on Q(\:.,K,n) as follows:
(1-63) wit) —> Ajz (t) ,
where zw(t) is the unique solution of

d -G -a
{ Szt + A, A Nlenzie) = p_ce, A %))

(1=64)
z2(0) = (uo,vo) .

By virtue of (1-58), (1-59) and (1-61), it follows from Proposition 1.1 and Lemma 1.3 that
for all we Q.(t.,x,n) and all t e [0,(:'], A.(t,A;aw(t)) is well-defined with

D(A.(t,A:av(t))) = Xge2 ‘and satisfies:

1. < cis,M)

-a -
(1~65) 1(Ax A-(t,A- wit))) B(X‘,x') Al + 1 °

for all A @ C, Red < 0, where C(s,M) is independent of t, w(t) and X
-a -a -a -1
(1-66) I{A’(t1,AB wolt ) A‘(tz,l\s "1"‘2”}‘;("3"‘. "2("'3” |B(xs'x8)
< cla,M) ity - ty] + Kla,s,mlt, = £,1M ,
for all t; e (O,t.], all vy e Q(t',x,n), i=1,2,3, 3=1,2. From Lemma 1.4, we see
that for all w € Q(ts,x,n) and all ¢, e [o,r..], i=1,2,
-a -a

(1-67) IP-(t1.A. v(t,)) - P-(tz,l\. v(tz))lx. <

< Cla,Milty - ty] + Ku(a,s,M)ty - 1™ . 'L

Since :}> 8, it is obvious that (ug,vg,) € D(A.s) by Lemna 1.5. Now we can follow the

-185-
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procedure in (2}. Let us denote by Uw(t,t) the fundamental solution corresponding to

Aa(t,A;uw(t)) for w e Qs(ts,x,n). Then the solution zw(t) of (1-64) is given by

t

(1-68) z,(t) = U, (t,0)(ug,vy) +¢{ U (e, DF (T4 Se(n))ar
and hence,

au a t -a
(1-69) Lw(t) = AU (£,0)(ug,vy) + A g Ut F_(T,A w(T))dT .

Using (1-65), (1-66) and (1-67), we can derive all the necessary estimates (see p. 172 -~ p.
174 of [2]) to conclude that | maps Qs(ts,x,n) into itsgelf and has a unique fixed point
w in Qs(ts,x,n) by taking ts smaller if necessary. Hence, A;‘E is a solution of (1-
62) and the same calculation that shows [ is continuous yields the uniqueness of solution
in the function class
(1-70) c™10,£_11D(A)) 0 CC(0,£ 1IDIA)) .

Next we shall show that the solution gains reqularity for t > 0, starting from the
case 8 = 0:
Corollary 1.7. Suppose ug(x), vo(x) are real-valued functions in ov, v > 3 such that

4

Pugl  vgl, <% and up(x),vg(x) > 0 for all x e {0,1]. Using Ry = R(O,M), we define

Ao = AO(O,(uo,vo)). Then there exists t; > 0 such that (0-3) has a unique solution in
c™10,£,11D(AF)) N CL(0,£5)1D(A))) satisfying the initial condition u(0,x) = ug(x),
v(0,x)} = v4(x), where a and n are the numbers in the above proposition.

We take t; so small that

(1-71) lult,x) 0, Ivie,x) 0 <
4 3

iz

(1-72) u(t,x),v(t,x) > % max(- %,- }), for all t e [O,to] and all x e [0,1] .

Now let Eo(t) = (u(t,x),v(t,x)) be the solution to (0-3) in the above corollary. Suppose
Ey(t) = (ult,x),¥(t,x)) is a solution to (0-3) in c"((s,conou\gn O Clis, e 13DIANY,

0 < 8« tyr satisfying EO(G) = 50(6). Here A, i the same as in the corollary.

0
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Writing z(t) » e ° Eo(t) and ;(t) - e_ °tEo(z), it is easily seen that both z(t) and
z(t) are solutions of

S 91e) + Agle,y(e)Iy(e) = Folt,y(t))
{(1-73)

-ROG

y(6) = e EO(G) P
where Ao(t,') and F,(t,°) are defined with Ry = R(0,M) as in the above corollary. By
virtue of (1-71), (1-72}) and the fact that Eo(t) lies in
c"([G,col;D(A:)) fa] c((&,tolzﬂ(ho)), we can use the argument in [2] to derive that
z(t) 3 z(t) on [6,6 + €] for some € > O. By repetition of the argument, we conclude

that =z(t) = z(t) on [6,to]. Next we observe that ADED(t) is uniformly HSlder

continuous in X, on each compact subset of (0,tgl. Fix any t. e (0,ty). Then,
» L] *

Eo(g-) € X,. Ve take g— as the initial time and Co(g-) as the initial data, noting
»
that Eo(g—) ex, ,v= % > % + 1In order to apply Proposition 1.6 to the cagse a = % '
= 4V
2 R 1
t
let us define Al - Al(o,Eo(;-]) with R, = R(E,Hl) where M, is a positive number such
2 2 2 2 2
!
that sup Iu(t,x)lz, sup lv(t,x)lz < —zg~ « From Proposition 1.6, there exists
* *
t t
Q[T,tol 13[3'.!:0]

a number 6, > 0 depending only on H1 (a, 8 and n are fixed) such that (0-3) has a

2

-~ L] * L
Nert ) . t
unique golution £,(t) in C ([5—. 3=+ 61]10(A;)) n C((5~, §- + 61]10(Al)] satisfying
- - 2 2
(2(25) = Eo(g—). Since D(AZ) is continuously imbedded into D(A:), £,(t) 2 E(t) on

2
- L 4 »
[%’- %— + 51] N [%‘,tol by the uniqueness of solution. Now if we take any other point of
L]
»
%‘.t ] as our initial time and the corresponding Eo(t) as our injitial data, then 61,

the length of the time interval of existence, remains the same in view of the above
*

argument. Therefore, if £ + 61 < tg, we can extend 51(c) on the whole interval

2
* t' »
- t
(5-.t,] such enat g (e) ec(('z""o""l ﬂ) and £ (t) E E(E) on [E-t].
L ]

-

*
Consequently, Eo(t) e C((%-,to]rx‘ ). Next define t; = %— + ocee 4 S: and suppose that
- 42 2
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hd 3 5
Eyle) e c((tk,tolpxK +2] has been proved. Then, Eo(tk+1) € X +v, v=3>7 . Take
tys) as the initial’time, £ (t_,,) as the initial data, and define
k + 1
Ak+1 A(O, EO(tk+1) with Rk+1 R( 2 'Hk+1)' where Hk+1 is a positive number such
2 2 2
that sup lu(t,x)! . sup Iv(t,x)l l "k Applying Proposition
. k. k4 T M
Te[tk+14t°] 2 re[t T I 2 2
1.6 to the case s = k ; L , we obtain a local solution
n a
Eqit)ec ([t]m,:k+1 + 8 10(A,,)) 0 C((t 1,tk+1 + 8, hoA 1)), vhere g, >0
2 2
depends only on Hk+1' By the uniqueness of solution and the fact that D(A:+1) is
2 2

a - » * -
continuously imbedded into D(Aj), § . (t) = Eo(e) on [ty q,tyyq + & 1 Nl q.t0). Bs
above, we can extend €k+1(t) on the whole interval [t;*1,t0] to arrive at

-
Eylt) e clit, .t 11X

*
k+1 +2). By induction, we conclude that Eo(t) e c((t ,to];xk) for

al) k > 0, and consequently, u{t,x),v(t,x) e C-((O,tol x [0,1]) from (0-3) and the fact
that c' was chosen arbitrarily.

Finally we shall prove that u(t,x),v(t,x) are nonnegative. We may write (0-3) as
(1-74) u, =(1 + v)Au + 2veo, + {Av + (B, - aqu - b‘v)}u B
(1-75) ve = (Y + uldv + 2u.v

+ (A + (E5 - asu - bzv)}v .

t x

Since Av(t,x) and Au(t,x) may not be bounded near t = 0, we cannot apply the
classical maximum principle directly to (1-74) or (1-75) to prove that u(t,x),v(t,x) > 0.
However, the maximum principle can be used on the interval [6,t0] for any & > 0, since
u{t,x),vi(t,x) e C.((O,to] x {0,1)). Thus, it is enough %o prove that u(t,x),v(t,x) » 0
for all x e (0,1] and all t e [0,8], where & is some positive number. For this
purpose, let us denote by (un(t,x),vn(t,x)) the solution to (0-3) with the initial
condition un(O,x) = uo(x) + % ’ vn(O,x) = vo(x) + % , n > 1., We choose Ry = R(O,M),
where M is the number such that 1 + '“o'v' 1 + Ivolv <

. Using this Ro, we define

A4

ERETN NF

1
Ao(t,'), and write Ao = Ag(0,(ugy,vg)), An = Ag(0,(ug + + ;)). Now all the

0
constants in the estimates to establish the local existence of golutions (u(t,x),v(t,x)),
(un(t,x),vn(t,x)), n > 1, can be taken uniformly with respect to n (recall the proof of

Proposition 1.6). Thus, there exists § > 0 independent of n > 1 such that z(t) e

-18-




™ (0,8110(Ag)) N Cl(0,81/D(A ) 1a the solution of

So 2(8) + At z(eNz(e) = Folt,2(t))
(1-76)

z(0) = (ugy,vy)
and z (t) e c"([0,8;04) N C((0,81/D(U_)) 1is the solution of

at “n

(1-77) 1 1
zn(O) = (ug + 2V + ;) ’

{ L 2 (8) * Aglt,z (012 () = Folt,2z (t))

~Rot -Rgt
where z(t) = e (u(t,x),vi{t,x)) and zn(t) = g (un(t,x),vn(t,x)). n » 1. Choose any

P e

@ such that a > a > % . Then, 004:) is continuously imbedded into D(A;5 and

consequently, z(t),z (t) € C"({0,81/0 U 1) N Cl(0,811D(Ay)). Subtracting (1-77) from (1-

76), we write

(1-78) Lo tale) - 2 () + Ag(E,2te)) (2(t) ~ 2 (0)) = !

= {Ao(t,:n(t)) - Ao(t,z(t))}zn(t) + Fo(t,z(t)) - Fole,z ()]} .
Let U(t,T) be the fundamental solution associated with Ao(t,z(t)). Following the

argument in [2), we can write

(1-79) z{t) = z,(t) = U(e, T)(z(T) ~ zn(f)) +
t
i + { U(c,s){Ao(s.zn(s)) - Ao(s,z(s))}zn(s)du

t
+ [ Ult,8) {Fy(s,z(s)) = F s,z (s))}ds
T
for all 0 < 7T € t € 8§, and subsequently, arrive at the inequality: for all 0 < %<8,

(1-80) sup lz(t) ~ zn(t)l : < C(l + EB-G sup lz{t) - zn(t)l -1,

n
tef0,3) DiAy) tefo,%) o4,

where C is a positive constant independent of n and 3. Hence, for some 0 < § < §,
lzn(t) - z(t)lvoka) + 0 uniformly on (0,3], as n + », from which it follows that

un(t,x) + ult,x) 2nd vn(t,x) + v(t,x) uniformly on [0,3] x {0,1). Since

uplt,x), v, (t,x) € ¢~ (0,81 x [0,11) nc(10,3] x (0,1]) and w,(0,x),v (0,x) > % for all

x @ {0,1], it is easily deduced that un(t,x),vn(t,x) » 0 for all (t,x) e [0,3] x [0,1]
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with the aid of the maximum principle. Therefore we conclude that wu(t,x),v(t,x) >0 for
all (t,x) e [0,8] x [0,1]. We have completed the proof of the main theorem:

Theorem 1.8. Suppose u,(x),vy(x) are nonnegative, real-valued functions in ¢, v> % .

Then, there exists tq, > 0 such that (0-3) has a unique solution in

Cn(IO,toliv(A:)) n[C.((O,tol x (0,1])]2 satisfying u(0,x) = ug(x), v(0,x) = vg(x)
and ux(t,x) - vx(t,x) =0 at x=20,1, for all t e (O,tol. Furthermore,
u(t,x),v(t,x) > 0 for all (t,x) e [0,t5) x [0,1]. (n, @ and A, are the same as in

Corollary 1.7.)
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Section 2. Global Existence of Solution (

In the previous section, we obtained a unique solution (ul(t,x),vi(t,x)) to (0-3)
satisfying u(0,x) = uyix), v(0,x) = vo(x). Let [0,T) be the maximal time interval to t
which (u(t,x),v(t,x}) can be extended so that (u(t,x),v(t,x)) 1lie in

C:oc(lo.r):D(A:)) N eT((0,T) x [0,1])]2. Our purpose in this section is to prove that

T = ® under the hypothesis y = 1. In view of the local existence theorem, it is enough
to prove that lu(t.x)lz,lv(t,x)l2 are bounded near t = T, assuming T < = Assuming
Y= 1, we write (0-3) as

2

(2-1) u, = &u + u® + ug) + (By - aqu = byvlu,

(2-2) ve = Alv + v2

= vD) + (E; -~ aju = byvlv,

(2-3) ¢, =4y +G,

where { =v-u and G = (!2 - ax - bzv)v - (Ey - aqu - b,v)u. The estimates will be
obtained through three steps.

(Step 1) Multiplying (2-1), (2-2), (2-3) by u,v,-Af, respectively and integrating over

[0,1), we get, using the fact that u(t,x), v(t,x) » 0 angd ult,0) = u (t,1) = v (t,0) =

vx(t,1) =0,

4 1 1 2 ' 2 1 ! 2 1 2
(2-4) '&'t'i'! uwax ¢ - | (1+u)uxdx+3I (aghu"ax + [ Ejufax ,
0 0 0 0
a1, 2 ! 2 1, 2 ',
(2-5) w7] va<-] (e viviax - o [ aviax + [ Eyviax,
0 0 0 0
1 1 1
a1 2 2
(2-6) e ;g g ax = - ({ (ag)“ax - g (A3)GdAx

from which it follows that

1

1 1 1
21 2 wePediac-] (rwdax- [ 0+ viax -3 [ oo lax
0 0 0 0
1 )
sx [ wrvdaxer o) whevhax, toranl ceom,
0 0
-21=
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where K is a positive constant depending only on E ,E;. Integrating (2-1) and (2-2)

over [0,1], we obtain

1 1
(2-8) S [ uwax < E, [ udx, for all z e (0,T),
at 1
0 0
and
a 1
(2-9) - [ wvax < E, [ vax, for all t e (0,T)
at 2
0 0
from which follows
1 1
(2-10) | wax + [ vax <My, for all t e [0,T)
0 0

where Mg, is a positive constant depending only on the initial data, E;, E, and T.

From (2-10) and the inequality:

(2-11) 12 < (e e v e i®, foranl e>o0, ann f£etio,n,
- € 2 x' 2 1
L L L
we find that
3 9 ! 3 ! 2
(2-12) W < (1+57) [ wlax v e[ uuiax
L 0 0
9 2 Voo
< (1 + Mgt IL. + € g uugdx, for all ¢> 0, all te [0,T),
and hence,
Yo, 1 9 2 _1 .13
(2-13) - ugfax < o (1 + mglut’ - £ wlY, for all e> 0, all te (0,T) .
0 L L
In the same way,
1 9 2 1.3
(2-14) - ‘j, wiax ¢ o (1 + A—c)HolvlL. -~ IVIL., for all €> 0, all te (0,T) .
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Substituting (2~13), (2-14) into (2~7) and using (2~10), we have

(2-15) “—1!‘(2+2+2)dx -11 2., 2 -1!1(A)2dx
i 2 : u v L < ; (ul x)dx 2 . 14

1

1
+K | (u2+v2)dx+4

Ho(lul:_ + lvls.)

0 L
1 9 2 2 1 3 3
* < (v+ ZE)HO('“lL. + IvIL-) - < (IulL. + IVIL.):
which can be rewritten, after taking € = %— A
0
da 1 ! 2 1 ! 2
(2-16) Lo e egax <[ (w24 vhax -+ [ (aplax
dat 2 x x x 2
0 0 0
! 1 3 3
+x [ ¥+ Prax - T M (¢ v’
4 0 [ L)
0 L L
:
:' +2m20 s 2upow® Wi, foranl te (om .
80 = L]
L L
1 3. 1.2 9 2 .
Since -~ ry M, T 4+ 3 Mp(1 + Y MO)T < C(My) for all T > 0, we can apply Gronwall's

inequality to deduce that

. 1
: (2-17) [ w2+ e iaxcny, forall telom,
0

where M, is a positive constant depending on E,, Eye T, luol ¢ lvol 2 and
L L

s e

Iv f

P

ox ~ Yox L2
(Step 2) Multiplying (2-1), (2-2) by =-M,-Av, respectively, and integrating over

[0,1], we obtain

P

1 1 1 1
4a
(2-18) a

a 2 - 2. _ 2.
:({ uZax < g (8u) “ax .{ u(8u) “ax ({ (udg + 2u g ) Budx

N |-

1 1 1
+x [ u'laulax + K [ uvlMalex + K [ ulax, for all t e (0,T)
0 0 0
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1 1 1 1
d 2 2 2
ax g vedx € - g (Av)“dx - g v(Av)“dx + J (VAT + 2vxcx)Avdx

(2-19)

N

1 1 1
+ k[ vPlavliax + x [ uvlaviax + K [ vax, for all t e (0,T)
(] 0 0

where K denotes positive constants depending only on El"i'bi' 1= 1,2, applying the

Laplacian A to both aides of (2-3), multiplying by Af and integrating over [0,1), we

have

a

1 1 1
2 1 2 1
(2-20) T g (85)%ax < - 3 g (g )%ax + = g G2ax, for all. t e (0,T) .

[STE

Now we will estimate each term on the right-hand sides of (2-18), (2-19) and (2-20):

1
(2-21) I utag)(swaxi < 1agh _tab _tsut _ < = 1aat? + 218007 tat?
2 2%%8 2 w'ul 5
0 L L L L L L

1 2 1 2 2

< g MButt, + 2u1{(1 + 1ag1%, + etag 2}

L L

1 2 1 2 2

< — §Aul LI J-Y4 | + C(M_)IAZY _, for all ¢ € (O0,T) ,
8 L2 8 xo2 1 12

which follows from (2-11) w.:h € = e
16,
1 1 2 1,
(2-22) |g 2u g _Mudx| = |g (8g)u ax| < |A¢|L. g u’dx

1
= 18z0 _ [ (-uu,)dx < 1AZD _lul  Mdut

L 0 L Lz Lz

<Lawn?, + Lasg 0?4 cmr1agi®,, for all te (0,1 .
8 28 2 1

’
L2
t 2 1 2 1 4 1 1 2
(2-23) K [ uv|dulax < x° [ ufax + k2 | viax + s/ ttwax, for all t e (0,7
[ 0 0 0
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1
(2-24) [ udax < 1ar?
0 L

1
2 1Y 0042 2

| vlax ¢ u (1 + <)t ¢+ Moetu 14, forall e€> 0
"0 1 [ 3 I‘2 1 x LZ

and all t e (0,T) .

1 1
Similar inequalities hold for K f uzlAuldx and ] v‘dx. Combining these inequalities,
0 0
we get
12 1 11 2
(2~25) K [ u’laujax + X | uv]sulax < y [ (aw)fax
0 0 0

+co B 12+ v 12y 4 ey, K, fer all te (0,1 .
L xLZ

2

The right-hand side of (2-19) can be estimated analogously to (2-21), (2-22) and (2-25).

1 1 1
(2-26) [ G2ax ¢k [ (u2+viiax + kX [ (u? ¢ vH)(ud + vD)ax ,
0 0 0

1
<x/ 2 + viax + 1 (e v i?)
L L

1
S [ (u2+ vrax+ L naui? ¢ vty 4 e (P
) x x 4 Lz LZ 1 x Lz

+ v %), forall te (0,7,
XLZ

where K denotes positive constants depending only on Ei"l'bi' i =1,2. Now summing (2-

18), (2-19) and (2-20), we find that

1

2 2 2, 2 2
+ (80)7)}ax ¢ CiMy,E ,a4,b,) g fuy + v, + (80) % }ax

1
d 2
(2-27) Ty g {u, + v,

+ C(H,,li,ai,bi), for all t e (0,7) ,

from which we derive, using Gronwall’s inequality,




2
x

'
(2-18) J tl+v
0

+ (Ac)zldx <M, forall tefl§m, !

|
whers 0 < § < T and M, is a positive constant depending on §, T and :
P Ino(x)lv + Ivo(x)lv. Here we fix 6§ and proceed to the last step.

(Step 3) Apply the Laplacian A to both sides of (2~1), (2~2), (2-3), multiply the :

resulting equations by Au,Av,-Azc, respectively, and integrate over (0,1}:

1 2 1 2 1 2 1
[ (awfax < - [ (Au ) ax - [ u(Bu )®ax - [ 6u_(8u)(su_)ax
0 0 x 0 X 0 x X

(2-29)

gl

1
2

1 1
- g 35 (Bu) (8u )ax - g 3u_ (AD) (8u )ax

1 1 1
- wat)(8udax + ~ [ (am2ax + 2 [ (aw)2ax, for all t e (0,m ,
0 x x 2 0 2 0

where H = (21 = ayu = byv)u,

a 1 2 1 2 1 2 1
by g (av)“ax < - g (av ) ax - g v(sv ) ax - g 6v, (&v) (&v, )ax

(2-30)

N

1 1
+ g 3L (Av) (Av )ax + g 3v,(80) (Av )dx

1 1 1
+ [ vidg)avax + 2 [ (an?ax + 1 [ (av)ax, for a1l t e (0,m ,
S x x 2 0 2 0

where J = (82 - axu - bzv)v,

a 1

1 1 1
2 2.2 1 2
(2-31) e g (8g)%ax < - 3 g (8°0%ax + 3 J (8G)“ax .

Ni-

As before, we will estimare each term on the right-hand sides of the above inequalities.

1
(A) Estimate of | u_(Au)(Au_)dx.
0 x x




First we observe that

1 1
1 1 1 = 1 by
2 2
(2-32) | wiax =~ U0 € (f uidx) (f w? ax)?,
0 0 0 0
2 x
(2-33) (Au(t,x))” = 2 I uxxuxxxdx, for all x e (0,1}, t e (O0,T) ,
a

where a 1is a point depending on t such that uxx(t,n) = 0, and hence,

1

S PR RPN
(2-34) lAuIL. <72 (g u,dx) (g u, ax)”, for all te (oM .

Using (2-32), (2-33) and the inequality: ‘Xbl-l < Aa+ (1= 2b, for all a,b >0,

0 < A< 1, we obtain

1 3 1 2
(2-35) |£ u, (8u) (Au )ax| = 3 |£ (8u) ax| < 5 M4l g () “ax

for all € > 0, all t e [§,T).

1
(B) Estimate of [ u_(AL)(Au_ )ax .
0 x x

We write, by integration by parts,

1 1 1
2
g u, (85) (Au Ydx = - g (A7) (Mu)“dx - g u (A7 ) udx .

1

2 1 -
Since Al - Il A;xdxl < (f (A:x)zdx)z, a being the point at which A7 =0, we see
L a 0

that

g &




1

1
1 1 1 - 1 - 1
(2-36) 1] (agrawPaxt < 1agt [ (muguggax < ([ g ax)?() wiex ()l ax)?
0 L 0 0 0 0
1, 1, 1
2 2, 2. 2 .2
< nz(g (ag )" ax) (g “xxxdx) , for all te (41 .

On the other hand,

! 1 2.2 %
(2-37) if ux(ACx)Audxl =3 lf (A z)(u yax| € — Iu I (f (8" g)%ax)
0 0

1

(1 u dx]z(g1 u? ax)

1
1 -
{f (Azz)zdx)z
0

(M2

1 1

0
% 2 Vo2 2 42
< uz(] uxxdx) (g (A°p°ax)®, for all t e [§,T) .

From (2-36), (2-37), we have

! Vo2 V22
(2-38) |g u (A0) (Bu dax| < € J u dx + € J (8°g)“ax

2 2, 2
* 2¢c é {tag )% + u }dx, for all €> 0,

all t e [§,T).

1 1
(C) Estimates of [ f_(Au)(Au )dx and [ w(AZ )(Au_)dx .
0 b4 x 0 x xX

It is easily seen that

1

1 1
(2-39) g (et < Iaclax < ([ capax)?
" o 0

1
2
Mz, for all t e [§,T) ,

from which follows

-28-
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1
'.{ g, (Bu) (8u dax| < 1T 1 _1aul bl ) € Mylaul Bl

L L L L L

M
Celdu 12 + -2 1aul?., forall ¢>0 andall te (87,
x _2 4¢ Lz

with the aid of (2-11), we obtain

[ B

2

1
(2-41) 1/ u(Ag.)(Au ddax| ¢ lul _DAT
0 x x " L

2
fAu_| < (M, + 24 )04 1 _lAu )
L 2 x L: 2 1 x Lz x

A

L

< etdu 12, + = o+ 20801, for all €30
xnz 4c 2 1 xLZ'

and all t e [§,T).

1
(D) Estimate of [ {(am? + (an? + (a6)%)ax.
0

It is obvious that

1 1
| tam? + an? + eoax < x [ w2 + V) ((a? + (an)ax +
0 0

1 1
sx [ eviaex] (a? s e,
0 0

where X denotes positive constants depending on E,,a;,b;, i = 1,2. Using (2-11) with
€= 1, we have
Vo2, 2 2 2 2 2, 2 2
(2-42) ] e D {awm” ¢ (avilax ¢ (hat ¢ %)) [ (AT + (av)¥)ax
0 L L 0
1

cm e m [ (s (Pl , for all v e (84,m.
0

since

*29=

(SR, .- - e e e e e e




2 2 ! 2. 2 2 ! 2
a 170+ v 17 < (f lsulax)® (f lavia)® < [ (am’ax + [ (avr’ax, for al2
X = X _»
L L ] 0 0 0
te (0,1,

we find that
1 1 2 1 2
(2~43) [ 2+ v3)2%ax < My [ (afax +m, [ (av)®ax, for all te [5,1) .
0 0 0

The remaining estimates can be obtained similarly to (A), (B) and (C). Adding (2-29),
(2~30), (2-31), and substituting the above inequalities into the right-hand side, we obtain

by taking € sufficiently small

1
{((a? + (a2 + (Atx)z}dx,

(2-40) S g’((Au)z + av)? + (8 ) hax < ClEg,a, by My J
for all t e {§m) ,
where C(Ei'ai'bi'"1'“2’ denotes a positive constant depending only on Ei"i'bi'
i=1,2, and My/My. We deduce by Gronwall'’s inequality that
1
(2-45) ! (ow? + (an? + (ag)%ax <my, for all te (6,m ,
where M3 is a positive constant depending on §, T, My My and '“Olv + lvolv.
Combining the above estimates and Theorem 1.8, we can conclude:
Theorem 2.1. Suppose Y = 1 in (0-3) and uo(x),vo(x) are real-valued, nonnegative
functions in .v' v > % « Then, (0-3) has a unigque global solution in
cfoc(lo,-);v(ng)> N (e ((0,m) x {0,111)2 satisfying ul0,x) = uglx), v(0,%) = vy(x)

and ux(t.x) - vx(t,x) =0 at x=0,1, for all t > 0. Furthermore, it holds that

ult,x),v(t,x) >0 for all (t,x) e [0,=) x (0,1).
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Appendix

[A=1) Multiplication is a continuous bilinear map of 01 L] 01 into 00 provided
¢l CRA A
ree
(Proof). Since 00 = L% and 01 is continuously imbedded into Lf for any
. 5 -€ -2' ~€
€ < 2 the assertion follows from the fact that multiplication is a continuous bilinear
map of Lf ® Lf into Lg for € < -:' . which is a special case of Theorem 9.4 in
= =€ = =€
2 2

(s].

{A-2] If € >0 and m is a nonnegative integer, then multiplication is a continuous

bilinear map of 01 [ X ] into Om.
- +&m
2
- -
(Proof). Let £ = J a cosn¥x € 01 and g= ] b cosnwx e .n° Define
n=0 -2-+e+n =0 °
k k
£, - 1 a cosn®x and g = ) b cosnix. Then, as k + ® f, +f in @ P9 *9
n=0 n=0 5 +
-
in .m' and f,q € n ¢ N for each k. Now multiplication is a continuous bilinear
i=1
2
mapping from Lj o 12 into LZ by Theorem 9.5 in (S]. Thus, f,5, +fg as k + =
= tem
2
in L: since 01 and ¢ are continuously imbedded into Lz and L:,
m 1
- +cém =z +em
2 2
respectively. The norm ¢} is equivalent to the norm [le} and hence, (f gk}. is
m 1:.2 k“k k=1
a Cauchy sequence in Om, from which we deduce fg € .n' "
{A-3]) Multiplication is a continuous bilinear mapping from 01 ® 9 into 0‘
= +ets
2

provided s > 0, € > 0.
(Proof). The assertion follows from [A-2] by interpolation [1]).
[A-4]) Multiplication is a continuous bilinear mapping from 0. ® 0. into 0. provided

s > 1.

(Proof). If m > 1 4is an integer K *he norm l-l. is equivalent to the norm 1-I 2 and
L
n

it is easy to see that multiplication is a continuous bilinear mapping from I‘: [} L:

into Li. Since 0- is continuously imbedded into L?.. the assertion follows when

s = m, and the general case follows by interpolation.

-3l=
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{A=5]) Multiplication is a continuous bilinear mapping from 01 3 L} 01 3 into 's
—+3s -+

provided 0 < s < 1. 4 4 4 4

(Proof). By interpolation, the proof is immediate from [A-1] and [A-4].

[A-6]) Define T : (f,qg) ——> f,9.- Then, I' is a continuous bilinear mapping:

(1) 02 ® 02 —_> 00 .

4 4
(11) .n+1 [ ] .m+1 _—> Om, for all integers m > 1,
(Proof). (i) Suppose f € & and g € ’5' Since 05 is continuously imbedded into Lg
a Y a 4
and 00 = Lg, the assertion follows from Theorem 9.4 in (5].
o« «
(ii) Let f = Z a cosn¥x € .m*1 and g = z b cosnwx € .m+1' Define
n=0 n=0
k k 3
£ = Z a cosn¥x and g, = 2 bncosnix. Then, £, g .. ¢© [\ 01 for each k, since
n=0 n=0 i=1
1
sin(n¥x)sin(tsx) = {cos(n - L)xx = cos(n + £)¥x}. 1In the mean time, ¢, and o are
2 2

continuously imbedded into Lp+y and Ly, respectively, and the norms l-lm+1,l~lm are
equivalent to the norms I-le ,I-ILZ, respectively. Therefore, kagkx _—> fxgx in

m+1 ™
2 - .
L, and {thgkx)k-1 is a Cauchy sequence in .m' from which the conclusion follows.

[A-7) T is a continuous bilinear mapping:

(1) ¢ [ X ) —_— .s provided 0 < g < 1 ;

8
> os provided s > 1 ;

(1ii) 03 L 01 —> ¢, provided € > 0 ;

E'bc
(iv) 05 [ 02 _— 01 provided € > 0 ;
= e
2 1
(v) 0u+, [ .s+1 —_—> .s provided s >0 and g + 2 <.

(Proof). (i) and (ii) follow from [A-6] by interpolation [1], and (iii) to (v) can be

proved by the same argument as in {A-3], (A-6), and by interpolation.
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